A theorist's take-home message from CMB

Supratik Pal

Indian Statistical Institute Kolkata

Outline

- CMB à la WMAP and Planck
- Inflation
- Dark energy
- New horizons

A cosmologist's wishlist

To explain...

A cosmologist's wishlist

To explain...

...uniquely !

CMB temperature $T_0 = 2.725K$ at all directions

⇒ The Universe is homogeneous and isotropic at largest scale How many parameters to describe the Universe? \longrightarrow 6 (or 7?) J von Neumann: "With four parameters I can fit an elephant and with five I can make him wiggle his trunk" :)

Are these 6 (or 7) parameters a bit too many?

All about CMB temperature

Happenings at CMB: Anisotropy, Polarization, Distortion Background : $T_0 = 2.725K \longrightarrow$ Blackbody spectrum Fluctuations : $-200\mu K < \Delta T < 200\mu K$ $\Delta T_{rms} \sim 70\mu K$ $\Delta T_{pE} \sim 5\mu K$ $\Delta T_{pB} \sim 10 - 100nK$

All about CMB temperature

Happenings at CMB: Anisotropy, Polarization, Distortion Background : $T_0 = 2.725K \longrightarrow$ Blackbody spectrum Fluctuations : $-200\mu K < \Delta T < 200\mu K$ $\Delta T_{rms} \sim 70\mu K$ $\Delta T_{pE} \sim 5\mu K$ $\Delta T_{pB} \sim 10 - 100nK$

Temperature anisotropy T + two polarization modes E & B \Rightarrow Four CMB spectra: $C_l^{TT}, C_l^{EE}, C_l^{BB}, C_l^{TE}$

Parity violation/systematics \Rightarrow Two more spectra: C_l^{TB}, C_l^{EB}

How to decode information?

Peak positions, heights and ratios give cosmological parameters \Rightarrow imprints of both early universe and late universe

Cosmological parameters from C_l

Fundamental/ fit parameters

 $\Omega_b h^2$ = baryonic matter density

 $\Omega_c h^2$ = dark matter density

- Ω_X = dark energy density
- P_R = primordial scalar power spectrum
- n_s = scalar spectral index
- τ = optical depth
- r = tensor-to-scalar ratio

Altogether 6 (or 7 if $r \neq 0$)

Cosmological parameters from C_l

Fundamental/ fit parameters

 $\Omega_b h^2$ = baryonic matter density

 $\Omega_c h^2$ = dark matter density

 Ω_X = dark energy density

 P_R = primordial scalar power spectrum

 n_s = scalar spectral index

- τ = optical depth
- r = tensor-to-scalar ratio

Altogether 6 (or 7 if $r \neq 0$)

Derived parameters

 $t_0, H_0, \Omega_b, \Omega_c, \Omega_m, \Omega_k, \Omega_{\text{tot}}, \sigma_8, z_{\text{eq}}, z_{\text{reion}}, A_{SZ}, \dots$

Best fit parameters	WMAP 9	Planck	
P_R	$(2.464 \pm 0.072) \times 10^{-9}$	$(2.196^{+0.051}_{-0.060}) \times 10^{-9}$	
n_s	0.9606 ± 0.008	0.9603 ± 0.0073	
n'_s	-0.023 ± 0.001	-0.013 ± 0.009	
r	< 0.13	< 0.11	
Ω_b	0.04628 ± 0.00093		
Ω_c	$0.2402^{+0.0088}_{-0.0087}$	$\Omega_b + \Omega_c = 0.315 \pm 0.017$	
Ω_X	$0.7135_{-0.0096}^{+0.0095}$	$0.685^{+0.018}_{-0.016}$	
au	0.088 ± 0.015	$0.089^{+0.012}_{-0.014}$	
H_0	69.32 ± 0.80 km/s/Mpc	67.3 ± 1.2 km/s/Mpc	
t_0	$13.772\pm0.059~\mathrm{Gyr}$	$13.817 \pm 0.048 \; \mathrm{Gyr}$	

WMAP9 and Planck give consistent results

Inflation from CMB

Lagrangian density $\mathcal{L}_{\phi} = \frac{1}{2}\dot{\phi}^2 - V(\phi)$ EM tensor components $\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi)$; $p_{\phi} = \frac{1}{2}\dot{\phi}^2 - V(\phi)$ Choose the potential to be sufficiently steep so that $V''V/V'^2 \ge 1$ Scalar field rolls down the potential : "Tracker potential" Governing equations

 $H^{2} \simeq \frac{8\pi}{3M_{P}^{2}}V(\phi)$ $3H\dot{\phi} + V'(\phi) \simeq 0$

Guth; Linde; Starobinsky; Liddle; Lyth; Sahni...

Adiabatic, Gaussian initial perturbations
 Adiabatic ⇒ all species share a common perturbation
 Gaussian ⇒ Gaussian random distribution, stochastic
 properties completely determined by spectrum

- Adiabatic, Gaussian initial perturbations
 Adiabatic ⇒ all species share a common perturbation
 Gaussian ⇒ Gaussian random distribution, stochastic
 properties completely determined by spectrum
- Harrison-Zeldovich spectrum $P_R(k) \simeq P_R(k_0) (\frac{k}{k_0})^{n_s-1}$ $P_R(k_0) \propto \frac{V(\phi)}{\dot{\phi}}$ direct reflection on inflationary models $P_R \sim 10^{-9} \Rightarrow$ small initial fluctuations

- Adiabatic, Gaussian initial perturbations
 Adiabatic ⇒ all species share a common perturbation
 Gaussian ⇒ Gaussian random distribution, stochastic
 properties completely determined by spectrum
- Harrison-Zeldovich spectrum $P_R(k) \simeq P_R(k_0) (\frac{k}{k_0})^{n_s-1}$ $P_R(k_0) \propto \frac{V(\phi)}{\dot{\phi}}$ direct reflection on inflationary models $P_R \sim 10^{-9} \Rightarrow$ small initial fluctuations
- $(n_s 1) = \text{small} \Rightarrow \text{nearly scale invariant power spectrum}$ $(n_s - 1) \propto \frac{dV}{d\phi}, \frac{d^2V}{d\phi^2} \neq 0 \Rightarrow V(\phi) \text{ slowly varying (quasi-dS)}$ confirms perturbations originated from dynamics of scalar field: proof of inflationary paradigm

- Adiabatic, Gaussian initial perturbations
 Adiabatic ⇒ all species share a common perturbation
 Gaussian ⇒ Gaussian random distribution, stochastic
 properties completely determined by spectrum
- Harrison-Zeldovich spectrum $P_R(k) \simeq P_R(k_0) (\frac{k}{k_0})^{n_s-1}$ $P_R(k_0) \propto \frac{V(\phi)}{\dot{\phi}}$ direct reflection on inflationary models $P_R \sim 10^{-9} \Rightarrow$ small initial fluctuations
- $(n_s 1) = \text{small} \Rightarrow \text{nearly scale invariant power spectrum}$ $(n_s - 1) \propto \frac{dV}{d\phi}, \frac{d^2V}{d\phi^2} \neq 0 \Rightarrow V(\phi) \text{ slowly varying (quasi-dS)}$ confirms perturbations originated from dynamics of scalar field: proof of inflationary paradigm
- Modified spectrum $P_R(k) \simeq P_R(k_0) (\frac{k}{k_0})^{n_s 1 + n'_s \ln(k/k_s)}$

 $n_s^\prime \neq 0 \Rightarrow$ deviation from power law / scale invariance

• Matches almost all the points for different *l*

But outliners at $l = 22, 40 \Rightarrow$ step function? lensing? new physics??

e.g.: Step function $V(\phi) \longrightarrow V(\phi) \left[1 + \alpha \tanh \frac{\phi - \phi_0}{\Delta \phi}\right]$

Souradeep, JCAP:2010

Gravitational waves

A small fraction of the CMB photons get polarized due to quadrupole anisotropies. Generates 2 polarization modes (E & B)

B modes \rightarrow Gravitational waves + NG + Lensing...

Detection of gravitational waves have direct reflection on energy scale of inflation (hence on fundamental physics)

Gravitational waves

A small fraction of the CMB photons get polarized due to quadrupole anisotropies. Generates 2 polarization modes (E & B)

B modes \rightarrow Gravitational waves + NG + Lensing...

Detection of gravitational waves have direct reflection on energy scale of inflation (hence on fundamental physics)

Feb 2014: $r < 0.13 \Rightarrow$ energy scale of inflation $< 2 \times 10^{16}$ GeV

Can at best rule out a class of models (e.g. $V = \lambda \phi^4$) which predict large r

Gravitational waves

A small fraction of the CMB photons get polarized due to quadrupole anisotropies. Generates 2 polarization modes (E & B)

B modes \rightarrow Gravitational waves + NG + Lensing...

Detection of gravitational waves have direct reflection on energy scale of inflation (hence on fundamental physics)

Feb 2014: $r < 0.13 \Rightarrow$ energy scale of inflation $< 2 \times 10^{16}$ GeV

Can at best rule out a class of models (e.g. $V = \lambda \phi^4$) which predict large r

> Feb 2014: $r \sim 0.2 \Rightarrow$ energy scale of inflation $\sim 10^{16}$ GeV

Controversy not yet settled. If confirmed, a direct proof of inflation.

Inflationary models (confronted with WMAP7)

Choudhury, SP, PRD:2012, JCAP:2012, NPB:2013 Pal, SP, Basu, JCAP:2010, JCAP:2012

Field equations are different for different cases!

Brane

$$V(\phi) = V_0 \left[1 + \left(D_4 + K_4 \ln \left(\frac{\phi}{M} \right) \right) \left(\frac{\phi}{M} \right)^4 \right]$$

1.234 < 10⁹ P_S < 3.126 ; 0.936 < n_S < 0.951
2.176 < 10⁵ r < 4.723 ; -0.798 < 10³ \alpha_S < -1.345

. . .

$$V(\phi) = \sum_{m=-2(\neq-1)}^{2} C_{2m} \left[1 + D_{2m} \ln \left(\frac{\phi}{M}\right) \right] \phi^{2m}$$

2.401 < 10⁹ P_S < 2.601 ; 0.964 < n_S < 0.966
0.215 < r < 0.242 ; -2.240 < 10³ \alpha_{S} < -2.249

Planck highlights

Francis, 2013

- Boring universe (6 parameters suffice)
- Little bit older universe (13.771 Gyr \rightarrow 13.817 Gyr)
- Confirms 3 neutrino species \Rightarrow removes doubt from WMAP

- Boring universe (6 parameters suffice)
- Little bit older universe (13.771 Gyr \rightarrow 13.817 Gyr)
- Confirms 3 neutrino species ⇒ removes doubt from WMAP
- Higher resolution \Rightarrow better estimate of $n_s \neq 1 \Rightarrow$ inflation
- More matter, less energy (higher 3rd peak)
- Peaks at high *l* direct evidence of BAO
- $r < 0.11 \Rightarrow \text{GW}$ yet undetected

- Boring universe (6 parameters suffice)
- Little bit older universe (13.771 Gyr \rightarrow 13.817 Gyr)
- Confirms 3 neutrino species ⇒ removes doubt from WMAP
- Higher resolution \Rightarrow better estimate of $n_s \neq 1 \Rightarrow$ inflation
- More matter, less energy (higher 3rd peak)
- Peaks at high *l* direct evidence of BAO
- $r < 0.11 \Rightarrow$ GW yet undetected
- Outliners are still there \Rightarrow physical origin, not from systematics
- Large scale anomalies : 10% deficit of signal, hemispherical asymmetry
- Big cold spot ⇒ superstructure?

Modeling inflation in the light of Planck

Choudhury, Majumdar, SP, JCAP(2013)

Inflection point inflation from MSSM

$$V(\phi) = \alpha + \beta(\phi - \phi_0) + \gamma(\phi - \phi_0)^3 + \kappa(\phi - \phi_0)^4 + \cdots$$

 $2.092 < 10^9 P_S < 2.297$; $0.958 < n_S < 0.963$ r < 0.12; $-0.0098 < \alpha_S < 0.0003$

Planck+WMAP9+BAO: Blue: $\Lambda CDM+r(\alpha_S)$, Red: $\Lambda CDM+r + \alpha_S$

Planck+WMAP9+BAO: Blue: Λ CDM+ $r(\alpha_S)$, Red: Λ CDM+ $r + \alpha_S$

Good fit with Planck for both low and high *l*

Dark energy from CMB

Cosmological constant

$$\rho_{\Lambda} = \text{const.}$$

$$p_{\Lambda} = -\rho_{\Lambda}$$

$$\delta \rho_{\Lambda} = 0$$

Dark energy

$$\rho_X \propto \exp\left(3\int_0^z \frac{1+\omega(z)}{1+z}dz\right)$$

$$p_X = \omega(z)\rho_X$$

$$\delta\rho_X \neq 0$$

Dark energy from CMB

Cosmological constant	Dark energy	
$ ho_{\Lambda}={\sf const.}$	$ \rho_X \propto \exp\left(3\int_0^z \frac{1+\omega(z)}{1+z}dz\right) $	
$p_{\Lambda} = -\rho_{\Lambda}$	$p_X = \omega(z)\rho_X$	
$\delta ho_{\Lambda} = 0$	$\delta \rho_X \neq 0$	

Reflections in CMB

- CMB shift parameter (position of peaks)
- Integrated Sachs-Wolfe effect

Shift Parameter

 $\mathsf{DE} \Leftrightarrow \mathsf{Shift} \text{ in position of peaks by } \sqrt{\Omega_m} D$

D= Angular diameter distance (to LSS) \Rightarrow Shift Parameter

$$R = \sqrt{\frac{\Omega_m h^2}{|\Omega_k| h^2}} \chi(y)$$

$$\chi(y) = \sin y (k < 0) \; ; \; = y (k = 0) \; ; \; = \sinh y (k > 0)$$

$$y = \sqrt{|\Omega_k|} \int_o^{z_{\text{dec}}} \frac{dz}{\sqrt{\Omega_m (1+z)^3 + \Omega_k (1+z)^2 + \Omega_X (1+z)^{3(1+\omega_X)}}}$$

Shift Parameter

 $\mathsf{DE} \Leftrightarrow \mathsf{Shift} \text{ in position of peaks by } \sqrt{\Omega_m} D$

D= Angular diameter distance (to LSS) \Rightarrow Shift Parameter

$$R = \sqrt{\frac{\Omega_m h^2}{|\Omega_k| h^2}} \chi(y)$$

$$\chi(y) = \sin y(k < 0) \; ; \; = y(k = 0) \; ; \; = \sinh y(k > 0)$$

$$y = \sqrt{|\Omega_k|} \int_o^{z_{\text{dec}}} \frac{dz}{\sqrt{\Omega_m (1+z)^3 + \Omega_k (1+z)^2 + \Omega_X (1+z)^{3(1+\omega_X)}}}$$

Hence, for k = 0

$$R = \sqrt{\Omega_m H_0^2} \int_o^{z_{\rm dec}} \frac{dz}{H(z)}$$

Hence calculate $\chi^2_{\text{CMB}}(\omega_X, \Omega_m, H_0) = \left[\frac{R(z_{\text{dec}}, \omega_X, \Omega_m, H_0) - R}{\sigma_R}\right]^2$

+ low z results (SNIa, BAO, OHD...) and find combined $\chi^2 = \sum \chi_i^2$

$\text{DE} \Rightarrow \text{change}$ in angular diameter distance and shift parameter

Is CMB constraint on shift parameter model independent?

Model	R	l_a
ΛCDM	1.707 ± 0.025	302.3 ± 1.1
w CDM ($c_{DE}^2 = 1$)	1.710 ± 0.029	302.3 ± 1.1
w CDM ($c_{DE}^2=0$)	1.711 ± 0.025	302.4 ± 1.1
$\Lambda \text{CDM} \ m_{\nu} > 0$	1.769 ± 0.040	306.7 ± 2.1
$\Lambda \text{CDM } N_{eff} \neq 3$	1.714 ± 0.025	304.4 ± 2.5
$\Lambda CDM \ \Omega_k \neq 0$	1.714 ± 0.024	302.5 ± 1.1
$w(z)$ CDM CPL ($c_{DE}^2 = 1$)	1.710 ± 0.026	302.5 ± 1.1
Λ CDM + tensor	1.670 ± 0.036	302.0 ± 1.2
$\Lambda CDM + running$	1.742 ± 0.032	302.8 ± 1.1
$\Lambda \text{CDM} + \text{running} + \text{tensor}$	1.708 ± 0.039	302.8 ± 1.2
Λ CDM + features	1.708 ± 0.028	302.2 ± 1.1

Melchiorri, PRD:2008

Integrated Sachs-Wolfe Effect

Some CMB anisotropies may be induced by passing through a time varying gravitational potential

- linear regime: integrated Sachs-Wolfe effect
- non-linear regime: Rees-Sciama effect

Integrated Sachs-Wolfe Effect

Some CMB anisotropies may be induced by passing through a time varying gravitational potential

- linear regime: integrated Sachs-Wolfe effect
- non-linear regime: Rees-Sciama effect

Poisson equation $\nabla^2 \Phi = 4\pi G a^2 \bar{\rho} \delta$

 $\Phi \rightarrow \mbox{constant}$ during matter domination

 \rightarrow time-varying when dark energy comes to dominate

(at large scales $l \leq 20$)

$$C_l = \int \frac{dk}{k} P_R(k) T_l^2(k)$$

$$T_l^{\rm ISW}(k) = 2 \int d\eta \exp^{-\tau} \frac{d\Phi}{d\eta} j_l(k(\eta - \eta_0))$$

But... Huge error bars! Perturbations in dark energy can remove degeneracy.

Dark energy in the light of Planck

```
Hazra,... SP,..., 1310.6161
```

Used 3 different parametrizations: CPL, SS, GCG \Rightarrow Analysis is robust

	CPL	SS	GCG
$w_0/(-A)$	$-1.09^{+0.168}_{-0.206}$	$-1.14^{+0.08}_{-0.09}$	$-0.957\substack{+0.007\\-0.043}$
$w_a/lpha$	$-0.27^{+0.86}_{-0.56}$	-	$-2.0^{+0.29}_{\text{unbounded}}$
Ω_m	$0.284_{-0.015}^{+0.013}$	$0.288^{+0.012}_{-0.013}$	$0.304^{+0.009}_{-0.011}$
H_0	$71.2^{+1.6}_{-1.7}$	$70.3^{+1.4}_{-1.4}$	$67.9^{+0.9}_{-0.7}$

Likelihood functions for different parameters of EOS

Planck shows tension with Λ at 1- σ

PanSTARRS rules out Λ at $2.4\sigma \leftrightarrow \text{low } z$ result (Rest, 1310.3828)

New horizons

- Large scale anomalies
- Lensing
- Non-Gaussianity
- Magnetic field

Large scale anomalies

Large scale anomalies

- Modifications to inflation? (Carroll, PRD:2008)
- Earlier universe preceding Big Bang? (Efstathiou,)
- Undiscovered source in solar system? (Yoho, PRD:2011)

A nice review by Huterer, 1004.5602

Lensing

Effects of lensing

- Broadening of peaks
- Non-Gaussianity

Lensing

Effects of lensing

- Broadening of peaks
- Non-Gaussianity

Why delensing?

- Better estimate of parameters
- B-modes: removes degenarcy (vide SPT results)

Lensing

Effects of lensing

- Broadening of peaks
- Non-Gaussianity

Why delensing?

- Better estimate of parameters
- B-modes: removes degenarcy (vide SPT results)

To do

- Propose delensing techniques
- Wait for Planck polorization & CMBPol data

Delensing using matrix inversion technique

Pal, Padmanabhan, SP, MNRAS:2014

Fractional difference between lensed and unlensed power spectra

Non-Gaussianity

Perturbations mostly Gaussian, described by 2-point correlation fn. If (small) non-Gaussianities are present \longrightarrow reflected via B modes 3- and 4-point correlation fn. \Rightarrow bispectrum f_{NL} & trispectrum g_{NL}, τ_{NL}

WMAP7 $\Rightarrow -10 < f_{NL} < 74$; $-7.4 \times 10^5 < g_{NL} < 8.2 \times 10^5$

Non-Gaussianity

Perturbations mostly Gaussian, described by 2-point correlation fn. If (small) non-Gaussianities are present \longrightarrow reflected via B modes 3- and 4-point correlation fn. \Rightarrow bispectrum f_{NL} & trispectrum g_{NL}, τ_{NL}

 $\mathsf{WMAP7} \Rightarrow -10 < f_{NL} < 74 \ ; \ -7.4 \times 10^5 < g_{NL} < 8.2 \times 10^5$

Why important?

- Maldacena limit \Rightarrow single field ($|f_{NL}| < 1$) vs multifield ($|f_{NL}| > 5$)
- B modes = GW + NG + lensing ⇒ Need to separate out NG for correct estimate of GW
- Suyama-Yamaguchi consistency relation between f_{NL} & τ_{NL}

Take-home message

- 6 parameter description of the universe
- Adiabatic, Gaussian initial perturbations
- Inflation confirmed, with a pinch of salt (anomalies!)
- Gravitational waves detected?
- Outliners yet unexplained
- Dynamical DE ? Probe ISW
- Large scale anomalies need to be explained
- Need delensing for B modes
- Non-Gaussian features to be explored