### The 21-cm signal from the epoch of reionization

### **Rajesh Mondal**

**Department of physics (cts), Indian Institute of Technology Kharagpur** 



#### 2<sup>nd</sup> TCGC (ER), Presidency University, Kolkata

Rajesh Mondal (IIT KGP)

**Epoch of Reionization** 



### Outline

- Motivations
- Introduction
- Difficulties
- Semi-numerical approach
- N-body simulation
- Friends-of-friends (FoF) algorithm
- Generating the ionization field
- Discussion
- Future work plan

### Aim

• We want to understand the process by which the universe was ionizes



Rajesh Mondal (IIT KGP)

8/9/201

### Motivation

- Unfortunately we have a very little knowledge about this event
- Many important questions such as the exact duration, properties of the first sources, thermal and ionization state of the IGM, feedback effect etc. are largely unknown

| Introduction                                                    | Observation                  |
|-----------------------------------------------------------------|------------------------------|
| 21-cm Signal                                                    | Hydrogen hyperfine structure |
| • The most favorable way                                        | 1s                           |
| • Usually the 21-cm signal from neutral hydrogen is measured in | λ = 21 cm                    |

terms of the brightness temperature which will be absorbed against the CMB radiation.

• The differential brightness temperature is proportional to  $\delta T_b \propto x_{HI} (1 + \delta_B) \left[ 1 - \frac{T_{CMB}}{T_s} \right]$ 

### Sources

- To ionize H-atom, one need photons of energy > 13.6eV
- So, the UV and X-ray photons are the candidate for that
- After ionization, the excess photon energy go to the IGM
- This process is called the IGM heating, which lead the  $T_s$  above the  $T_{CMB}$
- Then the 21-cm signal will be in emission

### Challenges

- But the strength of this signal very low
- Huge amount of foreground and noise associated with it, which has strength 4-5 order magnitude higher then the signal
- We statistically detect this signal i.e. by measuring the power spectrum  $\langle \delta \hat{T}_h(k) \delta \hat{T}_h^*(k') \rangle = (2\pi)^3 \delta_D(k - k') P(k)$
- But, foreground removal challenge still remain there

### Semi-numerical simulations

- So, one go for numerical simulation of this process, which play a crucial role in the modelling and prediction of 21-cm signal from the EoR.
- Full numerical simulations i.e. the radiative transfer simulations are computationally extremely expensive
- As an alternative to that, in a semi-numerical approach it is possible to achieve a reasonable accurate picture of the reionization
- Our Semi-numerical approach involve three main steps
  (i) N-body simulation (ii) FoF halo finder
  (iii) Ionization map generation

### The N-body simulation

- The early universe was very homogeneous and density field is in linear regime (fig. 2)
- But, we can see the density field in our local universe is highly non-linear (fig. 3)
- From perturbation theory we know that this problem can be analytically solved only in linear regime
- The N-body simulations are used to compute the nonlinear evolution of the dark matter distribution
- We have developed a efficient and parallelized particle mesh (PM) code for that purpose



Rajesh Mondal (IIT KGP)

**Epoch of Reionization** 

ð

### Friends-of-friends halo finder

- The correct location and mass of the haloes are very important, because it is understood that first luminous objects were form inside those collapsed haloes
- To identify the dark matter haloes, we have written a code using standard Friends-of-friends (FoF) algorithm (fig. 6)
- The halo mass function calculated from our simulation is consistent with the theoretical mass function (fig. 7)

**Identifying Haloes** 

Location of the haloes and Mass function

### Location of the haloes and Mass function

![](_page_11_Figure_3.jpeg)

Rajesh Mondal (IIT KGP)

# Assigning ionizing luminosity

- Observationally it is not well established, how the ionizing luminosity varies with galaxy properties
- Generally it is assumed that the ionizing luminosity from galaxies is proportional to the halo mass
- Number of ionizing photons contributed by a halo of mass  $M_h$

$$N_{\gamma}(M_h) = \frac{N_{ion}M_h}{m_H}$$

• Where  $m_H$  is the hydrogen mass and  $N_{ion}$  is a constant which is basically the number of photon entering the IGM per baryon in collapsed object.

### Generating the ionization field

- We estimate the mean number of photon  $\langle n_{\gamma}(x) \rangle_{R}$  within a spherical region of radius *R* around a point x and compare it with the corresponding spherically-averaged hydrogen number density  $\langle n_{H}(x) \rangle_{R}$ .
- The condition for the point x (one pixel) to be ionized is that ⟨n<sub>γ</sub>(x)⟩<sub>R</sub> ≥ ⟨n<sub>H</sub>(x)⟩<sub>R</sub>(1 + N̄<sub>rec</sub>)
  N̄<sub>rec</sub> is the mean number of recombination in the IGM.

![](_page_13_Figure_5.jpeg)

8/9/2014

![](_page_14_Figure_2.jpeg)

Left panel: The HI map with location of the haloes (white dots) for a mass averaged neutral hydrogen fraction  $x_{HI} = 0.5$ , of a slice through the centre of the simulation box. Right panel: The dimensionless power spectrum of HI fluctuations from the same simulated HI map.

Rajesh Mondal (IIT KGP)

**Epoch of Reionization** 

### Redshift space distortion

- 21-cm radiation can be mapped to a redshift space and thus to a position along the line of sight.
- As gas tends to move toward over dense regions, over/under dense regions will appear more over/under dense at large scales.
- the particle distribution is mapped to redshift space using

$$\mathbf{s} = \mathbf{x} + \hat{\mathbf{n}} \frac{\hat{\mathbf{n}} \cdot \mathbf{v}_p}{aH(a)}$$

• The power spectrum in redshift space  $P^{s}(k)$  depends on the direction of k. It is convenient to quantify this anisotropy in terms of angular momenta  $P_{l}^{s}(k)$  as

$$P^{s}(\mu, k) = \sum p_{l}(\mu) P_{l}^{s}(k)$$

 $\mu = \mathbf{k} \cdot \hat{n} / k$  which is the cosine of the angle between k and  $\hat{n}$ .

### Power spectrum

![](_page_16_Figure_2.jpeg)

For  $x_{HI} = 0.9$ : drop in power, but shape nearly same. The power as  $x_{HI}$  decrease. Become flat at low  $x_{HI} < 0.4$ 

Rajesh Mondal (IIT KGP)

**Epoch of Reionization** 

### Conclusions

- Using PM N-body simulation and FoF halo finder, one can generate a high resolution ionization map for a extensive dynamic range
- Implementing some simple assumption on physical processes, we have got the reionization maps at the expanse of moderate computational resources.
- So, it possible to achieve a reasonably accurate picture of the reionization using this semi-numerical approach
- **RSD** introduce anisotropies in the signal and modify the amplitude of the power spectrum
- Our results are consistent with the result reported in earlier works

Rajesh Mondal (IIT KGP)

# References

- [1] Loeb A., Barkana R., 2001, ARA & A, 39, 19
- [2] Weinberg S., Cosmology (Oxford, New York: Oxford University Press 2008)
- [3] Choudhury T. R., Ferrara A., 2006, MNRAS, 371, L55
- [4] Choudhury T.R., Haehnelt M.G., Regan J., 2009, MNRAS 394, 960
- [5] Majumdar S., Bharadwaj S., Choudhury T. R., 2013, MNRAS 434, 1978
- [6] Efstathiou G., Davis M., Frenk C., White S.D.M., 1985, ApJS 57, 241
- [7] Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ 292, 371
- [8] Furlanetto S. R., Zaldarriaga M., Hernquist L., 2004b, ApJ 613, 1
- [9] Furlanetto S. R., Zaldarriaga M., Hernquist L., 2004a, ApJ, 613, 16

# References

- [10] Mesinger A., Furlanetto S., 2007, ApJ, 669, 663
- [11] Zeldovich Y.B., 1970, Astronomy and Astrophysics 5, 84-89
- [12] Bharadwaj S., Srikant P.S., 2004, Journal of Astrophysics and Astronomy, 25, 67.
- [13] Sheth R. K., Tormen G., 2002, MNRAS, 329, 61
- [14] Jenkins A., Frenk C. S., White S. D. M., Colberg J. M., Cole S., Evrard A. E., Couchman
- H. M. P., Yoshida N., 2001, MNRAS, 321, 372
- [15] Wyithe J. S. B., & Loeb A., 2007, MNRAS, 375, 1034
- [16] Bagla J. S., Khandai N., Datta K. K., 2010, MNRAS, 407, 567
- [17] Sobacchi E. and Mesinger A., 2014, MNRAS, 440, 1662

### Collaborators

- Prof. Somnath Bharadwaj (IIT Kharagpur)
- Dr. Suman Majumdar (Stockholm University, Sweden)

![](_page_21_Picture_1.jpeg)

#### Rajesh Mondal (IIT KGP)