
The role of gravity in Physics beyond standard model
of elementary particles

Soumitra SenGupta
IACS, Kolkata

19 September, 2015

S.SenGupta (IACS, Kolkata, India) The role of gravity in BSM 1 / 64



Based on work with
S.Das and D. Maity
A. Das, T.Pal, J.Mitra, D.Das, S. Paulchowdhury, S.Choudhury
S. Chakraborty
S.Lahiri, N. Banerjee
B.Mukhopadhyaya, U.Maitra
D.Choudhury T.Mathew and S.Anand
A.Sen and S.Kumar

Published in
Phys. Rev D ( 2015), Eur.Phys,J.C. ( 2015), Phys.Lett.B ( 2015)
JHEP 1408, 004 (2014) ; Phys.Rev D 90, 047901,(2014) ; Eur.Phys.J. C 74,
3159,(2014) ; JHEP 1302, 136,(2013) ;Phys.Lett. B701, 367, (2011); JHEP
0805:042, (2008)

S.SenGupta (IACS, Kolkata, India) The role of gravity in BSM 2 / 64



Background

Principle of Naturalness

1 A quantity in nature can be naturally very small only if the underlying theory
becomes more symmetric as that quantity tends to zero – t’hooft

2 The symmetry protects the quantity against a possible large quantum
corrections upto the cut-off scale of the theory

3 Cutoff scale is the scale where some new Physics enters without which the
description is incomplete

4 For example : The fermion masses in SM are protected to a small value –
due to underlying chiral symmtery – not true for Higgs scalar
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Background

Naturalness problem in standard model

1 standard model keeps gravity away because gravity is extremely weak at the
electroweak scale

2 The standard model, despite it’s tremendous success, is therefore bound to
fail near a cut-off scale where gravity becomes strong called ’Planck scale’

3 Large hierarchy between the electroweak and Planck scale – leads to large
mass correction to the scalar Higgs which is not protected by any symmetry

4 To keep it within 1 Tev, unnatural fine tuning is necessary in every order of
perturbation theory
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Background

What is Planck scale ?

Einstein’s equation

Rµν −
1

2
gµν − Λgµν = −8πGTµν

Consider a small fluctuation over flat space metric

gµν = ηµν +
√
Ghµν

Gravitational coupling to a scalar field

gµν∂
µΦ∂νΦ = ∂µΦ∂µΦ +

√
Ghµν∂

µΦ∂νΦ
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Background

Graviton exchange amplitude

The amplitude ∼ (E 2G ) in natural units

Gravity is relevant at energy scale E ∼ 1√
G

= 1019Gev = MPlanck

Thus Planck scale is a natural cut-off for SM
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Background

Graviton loop,

Amplitude ∼ Λ4

M4 —- UV divergent and non-renormalizable – Problem of quantum
gravity

S.SenGupta (IACS, Kolkata, India) The role of gravity in BSM 7 / 64



Background

m2
H = m2

0 + 3
Λ2

8π2v2
(m2

H + 2m2
W + m2

Z − 4m2
t )

This implies
δm2

H ∼ Λ2

where Λ is the cutoff scale say Planck scale

To keep mH within Tev, one needs extreme fine tuning ∼ 10−32

UNNATURAL

Challenge for standard model?
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Background

Supersymmetry

1 Bring in bosonic (fermionic ) partner for every fermionic (bosonic) SM
particles

2 Assume that the masses of the superpartners are same as their SM
counterpart and demand bose-fermi exchange symmetry

3 This cancels the quadratic divergences in the Higgs mass correction – no fine
tuning is necessary – naturalness restored

4 No superpartner is observed so far, implying SUSY is a broken symmetry

5 SUSY breaking at Tev scale indicates generation of vacuum energy ∼ Tev4 –
far far above the observed value

S.SenGupta (IACS, Kolkata, India) The role of gravity in BSM 9 / 64



Background

Cosmological constant and fine tuning problem

Recall Einstein’s equation

Rµν −
1

2
gµν − λgµν = −8πGTµν

Lorentz invariance demands that the vacuum energy-momentum tensor is of the

form Tµν = −ρgµν implying λeff = λ+ 8πGρ

Observational bound on effective vacuum energy density ρv = λeff

8πG ∼ 10−47Gev4
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Background

Vacuum energy in standard model – Naturalness problem
again !

Consider the scalar field potential in SM,

V = V0 − µ2φ+φ+ g(φ+φ)2

ρ = Vmin = V0 −
µ4

4g
= V0 − 106Gev4 (1)

This implies V0 must be tuned to 53 place of decimal to get the desired value –

UNNATURAL !!
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Background

Supergravity

1 Demand local SUSY invariance

2 Gravitino appears as the partner of graviton. The SM fields and their
partners are described by superfields Φ

3 Theory is described by three functions Kahler potential K (Φ,Φ+),
Superpotential W (Φ) and a gauge kinetic function

4 Breaking of local SUSY ( say in some hidden sector ) is mediated to break
SUSY in observable sector – in terms of gravitino mass

5 V = eG (G i (G−1)j
iGj − 3) where G = K + W

6 Vmin = 0 i.e vacuum energy vanishes by extreme fine tuning again !!
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Addressing naturalness through gravity in extra dimensions

Gravity in higher dimension and Naturalness

We have seen that 4-dimensional gravity can not have any role in BSM Physics at
low energy apart from setting a cut-off for the theory

However the scenario changes drastically in presence of extra spatial dimensions

We now explore these possibilities
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Addressing naturalness through gravity in extra dimensions

Large extra dimensions - ADD model

ADD Scenario:

Extra

(Gravity + SM)

(Gravity )dimension

sdimensionObserved
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Addressing naturalness through gravity in extra dimensions

Einstein action in d dimensions:
S = 1

16πGd

∫
ddx
√
−gd Rd

Assume:

dsd
2 = ds2

4 Observed − dyIdy
I
Unobserved

Then

S =
Vd−4

16πGd

∫
d4x
√
−g4 R4 =

1

16πG4

∫
d4x
√
−g4 R4
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Addressing naturalness through gravity in extra dimensions

G4 = Gd

Vd−4

Four dimensional (observed) Planck scale
MPl(4) = 1019GeV

[Md−2
Pl(d) = ( 1

L )d−4M2
Pl(4)]

(i) d = 6 , L = 100 µm ⇒ MPl(6) = 1 TeV

(ii) d = 10 , L = 1 Fermi ⇒ MPl(10) = 1 TeV

Instead of the question why mW is small compared MP now we have the question
why Vn is so large? – Hierarchy in a new guise !
Stabilizing mechanism of this large volume has been proposed in the context of
string theory by using fluxes – Fine tuning again ?
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Addressing naturalness through gravity in extra dimensions

Warped Geometry – Randall-Sundrum Model

The Einstein action in 5 dimensional ADS5 space

S =
1

16G5

∫
d5x
√
−g5 [R− Λ]

Compactify the extra coordinate y = rφ on S1/Z2 orbifold

Identify φ to −φ i.e lower semi-circle to upper semi circle

Place two 3-branes at the two orbifold fixed points φ = 0, π

r is the radius of S1
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Addressing naturalness through gravity in extra dimensions

Planck

brane

Visible

brane

                  Compact coordinate  y 

The Z2 orbifolded coordinate y = rφ with 0 ≤ φ ≤ π and r is the radius of the S1
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Addressing naturalness through gravity in extra dimensions

Action

S = SGravity + Svis + Shid

SGravity =

∫
d4x r dφ

√
−G [2M3R − Λ︸︷︷︸

5−dim

]

Svis =

∫
d4x
√
−gvis [Lvis − Vvis ]

Shid =

∫
d4x
√
−ghid [Lhid − Vhid ]
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Addressing naturalness through gravity in extra dimensions

Metric ansatz:
ds2 = e−A(φ) ηµνdx

µdxν + r2dφ2

Warp factor and the brane tensions are found by solving the 5 dimensional

Einstein’s equation with orbifolded boundary conditions

A = 2krφ

Vhid = −Vvis = 24M3k

and

k2 =
−Λ

24M3
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Addressing naturalness through gravity in extra dimensions

Warping

(
mH

m0
)2 = e−2A|φ=π = e−2krπ ∼ (10−16)2

⇒ kr = 16
π ln(10) = 11.6279 ← RS value with k ∼ MP and r ∼ lP

So hierarchy problem is resolved not by introducing any new scale but by diluting
the scale through a warped geometry

Our universe (Visible brane)Hidden brane

r φ

Gravity + SM

Gravity 

φ
φ

=0
=π
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Addressing naturalness through gravity in extra dimensions

Origin of warped model – Effective Einstein’s equation –
an ’induced gravity’ description

1 Consider a system of two 3-branes placed at the orbifold fixed points and
embedded in a bulk

2 Bulk is a five dimensional AdS spacetime containing the bulk cosmological
constant Λ5 only

3 The most general metric is taken through radion field φ which is a function
of both spacetime co-ordinates xµ and extra dimensional co-ordinate y
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Addressing naturalness through gravity in extra dimensions

Metric Ansatz

ds2 = qµν(y , x)dxµdxν + e2φ(y ,x)dy2

The proper distance between the two branes within the fixed interval y = 0 to
y = rπ is given by:

d0(x) =

∫ rπ

0

dyeφ(y ,x)
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Addressing naturalness through gravity in extra dimensions

1 Putting a brane in a bulk space-time induces an effective Einstein’s equation
on the brane due to the bulk curvature

2 It may be derived using Gauss-Codacci equation with appropriate junction
condition where brane-bulk curvature ratio as perturbing parameter

The Einstein’s equations in first order on visible brane:

(4)Gµ
ν =

κ2

l

1

Φ
Tµ

2 ν +
κ2

l

(1 + Φ)2

Φ
Tµ

1 ν

+
1

Φ
(DµDνΦ − δµνD2Φ )

+
ω(Φ)

Φ2

(
DµΦDνΦ − 1

2
δµν (DΦ)2

)

Radion Φ = e2d0/l − 1, ω(Φ) = −3

2

Φ

1 + Φ

Φ is a function of the brane co-ordinates x
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Addressing naturalness through gravity in extra dimensions

1 It may be shown that the effective four dimensional cosmological constant
Λ4 = (Vvis +

√
−24ΛM3)

2 Tune Vhid = −Vvis =
√
−24ΛM3 to have a flat brane with metric ηµν —-

Constant radion scenario

3 Thus in RS model, the combined effect of bulk cosmological constant and
the brane tensions on the 3-branes are tuned exactly to counterbalance one
another to produce a vanishing brane cosmological constant such that the
visible brane is flat

4 But to produce a vacuum energy ∼ 10−47, we need to fine tune two terms
whose values are ∼ 1076 – fine tuning at 123-rd place of decimal !!

5 The fate is similar when warped geometry models are construcetd in a string
background – ’Throat geometry’ with fluxes tuned unnaturally to produce the
desired de-Sitter vacuum.

6 Can a brane-bulk non-alignment occur naturally to produce a small but
non-vanishing vacuum energy?
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Addressing naturalness through gravity in extra dimensions

Warped braneworld with non-zero cosmological constant

The metric :

ds2 = e−2A(y)gµνdx
µdxν + dy2

The action is :

S =

∫
d5x
√
−G (M3R − Λ5) +

∫
d4x
√
−gi Vi
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Addressing naturalness through gravity in extra dimensions

Solving The bulk Einstein’s equations away from the 3-branes we have,:

(4)Gµν = −Ωgµν

This is the effective four dimensional Einstein’s equation with Ω as the induced
cosmological constant on the brane
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Addressing naturalness through gravity in extra dimensions

Solution for the warp factor

6A′2 = − Λ5

2M3
+ 2Ωe2A

3A′′ = Ωe2A (2)

Assume ω2 is positive – de Sitter

e−A = ω sinh
(

ln
c2

ω
− k |y |

)
where ω2 = Ω/3k2 with c2 = 1 +

√
1 + ω2

S.SenGupta (IACS, Kolkata, India) The role of gravity in BSM 28 / 64



Addressing naturalness through gravity in extra dimensions

For ω → 0 we retrieve RS solution

We have the entire parameter space of ω2 = 10−N and krπ = x which produces
the desired warping of 10−16

36.5 37.5 38.5 39.5 40
x

-34.5

-33.5

-32.5

-32

-N

I II

A

III

B

DS ADS
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Addressing naturalness through gravity in extra dimensions

The brane tensions on both the branes are:

Vvis = −12M3k̃

[
c2

2 + ω2
vis

c2
2 − ω2

vis

]
,Vpl = 12M3k̃

[
c2

2 + ω2
pl

c2
2 − ω2

pl

]

The contribution to non-zero value of induced cosmological constant ω2
vis on the

visible brane comes from the fine tuned imbalance between first order correction
to the extrinsic curvature and projected Weyl tensor and the brane tension

Unlike RS model with a negative tension visible brane ( intrinsically unstable ),
here we can have two positive tension branes
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Addressing naturalness through gravity in extra dimensions

Modulus stabilization

1 In RS model the modulus can be stabilised by Goldberger-Wise mechanism
by using a scalar field in the bulk and tuning the boundary values such that

2 rk ∼ k2

m2 log
ΦP

ΦT
∼ 12

3 But no back-reaction of the bulk field is taken and the inclusion of the bulk
scalar action is quite ad-hoc

4 Can we include scalar back-reaction? Can we find a geometric origin of this ?
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Addressing naturalness through gravity in extra dimensions

Signature of RS model –Massive towers

1 Bulk graviton KK modes of mass at Tev range

2 Massless graviton mode couples to standard model fields at the brane as
∼ 1/MP

3 Massive graviton modes couple ∼ ekrπ/MP ∼ Tev−1

(Though the number of KK modes are smaller in number than ADD model,
but has enhanced coupling )

4 Detectable signatures at LHC?
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The conflict with LHC results

The conflict with LHC results

1 In the search for extra dimension through dilepton events in 8-TeV
proton-proton collision, the ATLAS detector at LHC has set stringent lower
bound on the mass of the Randall-Sundrum (RS) lightest graviton
Kaluza-Klein ( KK ) mode ∼ 2.5 Tev

2 we take k < M with M ∼ MPl . so that k , which measures the bulk curvature
must be smaller than the Planck scale ensuring the validity of the classical
solutions for the bulk metric given by RS model.
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The conflict with LHC results

Consider the metric expansion,

gαβ = ηαβ + hαβ

we can find the KK mass tower of graviton from this expression

mn = xnke
−krcπ

Also recall

mH = m0e
−krcπ
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The conflict with LHC results

Using ε = k/MPl ,

m1 = x1ε
mH

m0
MPl

M2
Pl = M3

k

Take m0 = αM

M is the 5-dimensional Planck scale and α is any constant parameter α = 1

implies that the cut-off scale is the quantum gravity scale M ∼ MPl , while α < 1
indicates the appearence of new physics below Planck scale.
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The conflict with LHC results

m1 = x1ε
2/3 mH

α

If we consider α to be 1 i.e the cut-off scale is the 5-dimensional Planck scale M
then values of m1 for different values of ε varying from 0.01− 0.1 are

ε = k
MPl

m1 = x1ε
2/3mH (GeV)

0.01 22.39
0.03 46.59
0.05 65.49
0.07 81.96
0.09 96.91
0.1 103.96

Table: Theoretical values of first KK mass mode of graviton From RS model when
α = 1, x1 = 3.83 and mH = 126.0GeV
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The conflict with LHC results

The Experimental lower bound for the mass of the first KK mode of graviton for
different values of ε as reported by the ATLAS Collaboration are shown in table:

ε = k/MPl m1(TeV)
0.01 1.01
0.03 1.48
0.05 1.88
0.07 2.04
0.09 2.17
0.1 2.22

Table: The mass table from the results of ATLAS

The tables clearly indicate that for the entire range of 0.01 < ε < 1, the
theoretical prediction for the mass of the first KK mode of graviton is much below
the lower bound set by the ATLAS data.
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The conflict with LHC results

For a possible resolution to this problem we calculate the threshold values of the
parameter α from the expression, α = x1ε

2/3mH/m1 and use the values of lower
bound of m1 for different ε as reported by ATLAS data.

These values are shown in table:

ε = k/MPl m1 from ATLAS(TeV) values of α
0.01 1.01 2.2× 10−2

0.03 1.48 3.1× 10−2

0.05 1.88 3.4× 10−2

0.07 2.04 4.0× 10−2

0.09 2.17 4.4× 10−2

0.1 2.22 4.6× 10−2
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The conflict with LHC results

1 The scale m0 is nearly two order lower then the Planck scale

2 This will further go down if the future experiments raise the lower bound of
the mass of lightest KK graviton mode even more.

3 A possible resolution is to assume that rc is few order larger than lPl such
that m0 ∼ r−1

C But that brings back intermediate scale again.

4 More number of warped dimensions with larger number of moduli ?
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Higher curvature Gauss-Bonnet gravity

Higher curvature Gauss-Bonnet gravity

The RS model considers a 5-dimensional Einstein gravity action with a
cosmological term

Space-time dimension higher than four in general admits of suitable combinations
of higher order curvature terms when added to Einstein gravity still lead to second
order field equations which in turn ensures the model to be free of any ghost field

In 5-dimensions, only a particular combination of the curvature terms, called the
Gauss-Bonnet (GB) term gives rise to the most general ghost-free theory for
gravity

Such a term appears as the correction at leading order in the inverse string
tension, to the gravity action in string theory

A term of this type in the action turns out to be a trivial surface term in
4-dimensions
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Higher curvature Gauss-Bonnet gravity

Such an addition can in principle modify phenomenological and cosmological
signatures significantly

The characteristic parameter of Einstein-Gauss-Bonnet (EGB) theory is the
coefficient of the higher derivative terms, denoted here as α

In the context of warped phenomenology, the GB correction modifies the
conventional RS model by giving rise to an α-dependent warp factor
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Higher curvature Gauss-Bonnet gravity

The overall framework is described by the following action

S5 = SEH + SGB + SBrane + SBulk

SEH =
M3

2

∫
d5x

√
−g(5)R(5)

SGB =
αM

2

∫
d5x

√
−g(5)[R

ABCD
(5) R

(5)
ABCD − 4RAB

(5) R
(5)
AB + R2

(5)]

SBrane =

∫
d5x

2∑
i=1

√
−g (i)

(5)[L
field
i − Ti ]δ(y − yi )

SBulk =

∫
d5x

√
−g(5)[Lfield

Bulk − 2Λ]

In the above action, i is the Brane index, i=1(Hidden brane), 2(Visible brane) and
Lfield

i is the Lagrangian for the fields on the ith brane with the brane tension Ti .
Similarly, LBulk is the Lagrangian for the fields present in the bulk. All SM fields
are on the visible brane, as they are open string modes in string-inspired scenarios.
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Higher curvature Gauss-Bonnet gravity

The 5-dimensional metric assumes the form

ds2 = e−2A(y)ηαβdx
αdxβ + r2

c dy
2

Integrating out the coordinate y from the 5-dimensional action, we arrive at

M̄Pl
2 ' M3

kα

In terms of kRS we have

kα =

√
3M2

16α
[1−

√
1−

32αk2
RS

3M2
]

The reality of kα demands an upper bound on α, given by

α ≤ 3

32

M2

kRS

2
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Higher curvature Gauss-Bonnet gravity

With the GB correction, the expression for graviton kk-mode mass is modified to

mn = kαxne
−kαrcπ

where mn is the mass of the nth mode and xn is the nth root of J1(x). In our

modified model with GB correction the coupling of graviton KK-modes with SM
fields becomes

Λ−1
π =

ekαrcπ

M̄Pl

Despite the change in the value of the parameter ’k’ due to the GB coupling α,
the magnitude of the exponent is kept in the range 11.4-11.7, to achieve the
desired hierarchy

This keeps the graviton KK mode coupling with the brane fields similar to that in
RS model, with kα replacing kRS
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Higher curvature Gauss-Bonnet gravity

If we consider the first KK mode of RS graviton then its mass is given by

mG = kαe
−kαrcπx1

where x1 = 3.83. From the above relation, increase in mG implies increase in kα
for a fixed value of the warp factor. A suitable value of α can raise the first KK
mode mass beyond the lower bound set by ATLAS without disturbing the
condition kRS/M < 1
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F(R) gravity as higher curvature correction

F(R) gravity as higher curvature correction

Now we turn our attention to another class of quantum gravity corrections namely
F (R) model
We start from the following action for F (R) gravity on the bulk

S =

∫
d5x
√
−G

(
M3F (R)− Λ

)
+

∫
d4x
√
−giVi

where Λ is the bulk cosmological constant, R is the five dimensional Ricci scalar
and Vi is the brane tension for ith brane.
The warped metric ansatz is:

ds2 = e−2A(y)gµνdx
µdxν + r2

c dy
2

S.SenGupta (IACS, Kolkata, India) The role of gravity in BSM 46 / 64



F(R) gravity as higher curvature correction

The Einstein equation in F (R) gravity with constant scalar curvature are:,{
4Rµν +

e−2A

r2
c

(
A′′ − 4A′2

)
gµν

}
F ′(R)

−1

2
gµνe

−2AF (R) = − Λ

2M3
e−2Agµν

4

r2
c

(
A′′ − A′2

)
F ′(R)− 1

2
F (R) = − Λ

2M3

and the five dimensional scalar curvature has the following expression,
5R = e2A(4R) + 1

r 2
c

(
8A′′ − 20A′2

)
.

S.SenGupta (IACS, Kolkata, India) The role of gravity in BSM 47 / 64



F(R) gravity as higher curvature correction

From these equations spacetime part and the extra dimension part separate as,

4Gµν = Ωgµν

3A′′ = Ωr2
c e

2A

Introducing F (R) = R + f (R) (with rescaling y → rcy),

(A′)2
(

6 − 4f ′
)

= − Λ

2M3
+

f

2
+ 2Ωe2A

(
1− 2

3
f ′
)
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F(R) gravity as higher curvature correction

From the above equation we could obtain the following solution for the variable A
as,

e−A = ω cosh

(
ln
ω

c1
+ kF y

)
k2

F = −1

6

(
Λ

2M3 − f
2

1− 2
3 f
′

)

The bulk cosmological constant Λ is negative for anti-deSitter bulk
f ′(R) imply derivative of the function f (R) with respect to R

The respective brane tensions are being given by,

Vvis = 12M3kF

 ω2

c2
1
e2krcπ − 1

ω2

c2
1
e2krcπ + 1


Vhid = 12M3kF

1− ω2

c2
1

1 + ω2

c2
1


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F(R) gravity as higher curvature correction

As usual The graviton KK modes has the following expansion

hαβ(x , φ) =
∞∑

n=0

h
(n)
αβ(x)

χ(n)(φ)
√
rc

The masses of the graviton KK excitations

mn = kF xne
−kF rcπ

S.SenGupta (IACS, Kolkata, India) The role of gravity in BSM 50 / 64



F(R) gravity as higher curvature correction

The usual form of the interaction Lagrangian is,

L =
1

M3/2
Tαβ(x)hαβ(x , φ = π)

Expanding the graviton field into the KK states and using the proper
normalization for χn(φ) we arrive at,

L =
1

MPl
Tαβh

(0)
αβ −

1

Λπ

∞∑
n=1

Tαβh
(n)
αβ
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F(R) gravity as higher curvature correction

Thus in the context of F (R) gravity as well the zero mode separates out from the
sum and couples with inverse 4-dimensional scale, MPl .

All the massive KK states are also suppressed by the scale Λπ = ekF rcπMPl ,
which is of order the inverse weak scale which is same as in RS model.

Hence the same lower bound of first KKmass of 3 TeV also applies in this context.
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F(R) gravity as higher curvature correction

Now we would like to know what is the criteria for k2
F to be greater than k2

RS so
that the graviton KK mass can exceed the lower bound set by ATLAS.

Using f (R) = βRn we obtain the bound,

R > −2n | Λ |
3M3

The criteria kF/M < 1 (i.e. bulk curvature is less than 5D Planck scale to ensure
that the classical solution can be trusted) leads to an inequality given by

| Λ |
12M5

+
βRn−1

2M2

{
R +

4

3
nM2

}
< 1

An ADS bulk implies, β > 0 is the valid choice for odd powers of R, while β < 0
is a valid choice for even powers of R.

Hence the form of F (R) should be
F (R) = R − βR2 or R + βR3 etc.
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F(R) gravity as higher curvature correction

Thus the graviton KK mode bounds by recent LHC experiments can not be
explained in standard RS scenario, it can be explained quiet well in F (R) gravity
framework AND we find constraints on

Bulk curvature and Nature of the F (R) gravity model
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F(R) gravity as higher curvature correction

We have seen that the coupling of the graviton KK- modes with SM fields remain
same as RS -scenario

The graviton KK mode mass expression

mn = kF xne
−kF rcπ

Also

k2
F = −1

6

(
Λ

2M3 − f
2

1− 2
3 f
′

)
Suitable choice of f (R) can increase the value of kF to raise the 1-st graviton
KK-mode mass beyond 3 Tev
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F(R) gravity as higher curvature correction

A geometric modulus stabilization

We start by postulating the five-dimensional pure gravity action, in the Jordan
frame, to be

SEH =

∫
d4xdy

√
g̃(2M3f (R̃)− 2λM5)

−
∫

d4xdy
√
g̃ [λvδ(y − π) + λhδ(y)],

Concentrating on the bulk action, it can be rewritten as

Sblk =

∫
d4xdy

√
g̃(2M3R̃ F − U − 2λM5), (3)

where,
U = 2M3[R̃F − f (R̃)]F ≡ f ′(R̃).

The non-minimal coupling above can be rotated away by a conformal
transformation,

g̃ab → gab = exp(2ω(xµ, y)) g̃ab
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F(R) gravity as higher curvature correction

The Ricci scalars in the two frames are related through

R̃ = e2ω
[
R + 8�ω − 12g ab∂aω∂bω

]
,

with � representing the Laplacian operator appropriate for the Einstein frame
(defined in terms of gab).
Choose a specific form of ω(xµ, y),

ω =
1

3
lnF ≡ γ φ

5
, γ ≡ 5

4
√

3M3/2
, (4)
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F(R) gravity as higher curvature correction

This leads to

S =

∫
d4xdy

√
g [2M3R − 1

2
g ab∂aφ∂bφ− V (φ)]

−
∫

d4xdy
√
ge−γφ[λvδ(y − l) + λhδ(y)]

where

V (φ) = [U(φ) + 2λM5] exp(−γφ) . (5)
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F(R) gravity as higher curvature correction

1 We have traded the complex form of f (R̃) for the usual Einstein-Hilbert
action, supplemented by a scalar field that encapsulates the extra degree of
freedom encoded in the higher powers of derivatives in f (R̃)

2 As long as the potential V (φ) is bounded from below, the system would be
free from instabilities

3 The exact form of V (φ) would, of course depends on the form of f (R̃)

4 Consider the case where V (φ) has a minimum at φ = φmin. Given sufficient
time, one would expect that φ would settle at φmin with V (φmin) acting as
the effective cosmological constant (i.e, it would assume the role of Λ

5 To the leading order, only small deviations about φmin should be considered
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F(R) gravity as higher curvature correction

Defining y ≡ rcy , we consider the metric

ds2 = e−2σ(y)ηµνdx
µdxν + dy2

The Einstein’s equations reduce to

6σ′2 =
1

4M3
[
1

2
φ′2 − V ]

3σ′′ =
1

4M3

[
φ′2 + e−γφ(λhδ(y) + λvδ(y − l))

]
(6)
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F(R) gravity as higher curvature correction

The scalar field satisfies,

φ′′ − 4σ′φ′ − dV

dφ
+ γe−γφ[λhδ(y) + λvδ(y − l)] = 0 (7)

Expanding around φ = φa ∼ φmin,

V

M5
= V0 + (

V1

M7/2
)ξ + (

V2

M2
)ξ2, (8)

where ξ(y) = M−3/2(φ− φa) and Vi are constants.
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F(R) gravity as higher curvature correction

We may now substitute this form of V to solve for ξ

Then Substitute for ξ in the action and integrating over y = rcy , we find a
potential for the modulus rc

Adjusting the parameters V0,V1,V2, we find the stable minima for the radion
along with the desired warp factor
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F(R) gravity as higher curvature correction

1 The modulus field in the RS scenario can be stabilized in purely geometrical
way

2 Appealing to plausible quantum corrections to the Einstein-Hilbert action, we
trade the higher derivatives of the metric tensor for an equivalent scalar field
with a complicated potential form and a nonminimal coupling to gravity

3 On going over to the Einstein frame (characterized by a nonminimal
coupling), the corresponding potential is seen to have a local minimum
leading to an negative effective bulk cosmological constant, and a fluctuation
field with a naturally small mass

4 The resulting framework leads to the stabilization of the modulus without the
need to appeal to boundary localized interactions. The correct hierarchy is
obtained for a wide range of parameters

5 The mechanism offers a natural way out of the tension between the
theoretical expectations for the KK-graviton masses and the strong bounds
obtained at the LHC
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Conclusion

Conclusion

1 Gravity in extra dimensions can play a significant role in BSM

2 This leads to search for extra dimensions in LHC

3 Warped geometry models with Einstein’s gravity in the bulk – some tension
with recent ATLAS data for kk graviton

4 Include higher curvature quantum gravity effects in the bulk which are free of
ghosts

5 These effects can restore the candidature of warped geometry model for
certain choices of the parameter of higher curvature terms

6 The effects of such terms should be examined in other scenario

7 Gravity in extra dimensions are projected to be strong candidates to make
standard model natural

8 However the fine tuning issue pops up in different guise.

9 Explanation by ’Landscape scenario’ – An ’escape’ rather than a ’solution’ of
the problem
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